Is Genetic erosion occuring?

January 03, 2013

Are we responsible? Reason or factors causing erosion and how we can preserve it?

Shehzad Ahmad Kang

Genetic erosion is a process whereby an already limited gene pool of an endangered species of plant or animal diminishes even more when individuals from the surviving population die off without getting a chance to meet and breed with others in their endangered low population. The term is sometimes used in a narrow sense, such as when describing the loss of particular alleles or genes, as well as being used more broadly, as when referring to the loss of varieties or even whole species.

Genetic erosion occurs because each individual organism has many unique genes which get lost when it dies without getting a chance to breed. Low genetic diversity in a population of wild animals and plants leads to a further diminishing gene pool – inbreeding and a weakening immune system can then “fast track” that species towards eventual extinction.

Genetic erosion
Genetic erosion

All the endangered species of the world are plagued to varying degrees by genetic erosion, and most need a human-assisted breeding program to keep their population viable, thereby avoiding extinction over long time frames. The smaller the population is on a relative scale, the more magnified the effect of genetic erosion becomes, as weakened individuals from the few surviving members of the species are lost without getting a chance to breed.

Genetic erosion also gets compounded and accelerated by habitat fragmentation – today most endangered species live in smaller and smaller chunks of (fragmented) habitat, interspersed with human settlements and farmland, making it much more difficult to naturally meet and breed with others of their kind, so many die off without getting a chance to breed at all, and thus are unable to pass on their unique genes to the living population.

The gene pool of a species or a population is the complete set of unique alleles that would be found by inspecting the genetic material of every living member of that species or population. A large gene pool indicates extensive genetic diversity, which is associated with robust populations that can survive bouts of intense selection. Meanwhile, low genetic diversity can cause reduced biological fitness and increase the chance of extinction of that species or population.

Population bottlenecks create shrinking gene pools, which leave fewer and fewer fertile mating partners. Genetic erosion in agricultural and livestock is the loss of biological genetic diversity – including the loss of individual genes, and the loss of particular recombinants of genes (or gene complexes) – such as those manifested in locally adapted landraces of domesticated animals or plants that have become adapted to the natural environment in which they originated.

The major driving forces behind genetic erosion in crops are variety replacement, land clearing, overexploitation of species, population pressure, environmental degradation, overgrazing, governmental policy, and changing agricultural systems. The main factor, however, is the replacement of local varieties of domestic plants and animals by other varieties or species that are non-local. A large number of varieties can also often be dramatically reduced when commercial varieties are introduced into traditional farming systems. Many researchers believe that the main problem related to agro-ecosystem management is the general tendency towards genetic and ecological uniformity imposed by the development of modern agriculture.

Preservation of gene resourses:

  • In situ conservation

With advances in modern bioscience, several techniques and safeguards have emerged to check the relentless advance of genetic erosion and the resulting acceleration of endangered species towards eventual extinction. However, many of these techniques and safeguards are too expensive yet to be practical, and so the best way to protect species is to protect their habitat and to let them live in it as naturally as possible.

Wildlife shelter and national parks have been created to preserve entire ecosystems with all the web of species native to the area. Wildlife corridors are created to join fragmented habitats to enable endangered species to travel, meet, and breed with others of their kind. Scientific conservation and modern wildlife management techniques, with the expertise of scientifically trained staff, help manage these protected ecosystems and the wildlife found in them. Wild animals are also translocated and reintroduced to other locations physically when fragmented wildlife habitats are too far and isolated to be able to link together via a wildlife corridor, or when local extinctions have already occurred.

  •  Ex situ conservation

Modern policies of zoo associations and zoos around the world have begun putting dramatically increased emphasis on keeping and breeding wild-sourced species and subspecies of animals in their registered endangered species breeding programs. These specimens are intended to have a chance to be reintroduced and survive back in the wild. The main objectives of zoos today have changed, and greater resources are being invested in breeding species and subspecies for then ultimate purpose of assisting conservation efforts in the wild. Zoos do this by maintaining extremely detailed scientific breeding records (i.e. studbooks)) and by loaning their wild animals to other zoos around the country (and often globally) for breeding, to safeguard against inbreeding by attempting to maximize genetic diversity however possible.

Costly (and sometimes controversial) ultra-modern ex-situ conservation techniques have emerged that aim to increase the genetic biodiversity on our planet, as well as the diversity in local gene pools. by guarding against genetic erosion. Modern concepts like seedbanks, sperm banks and tissue bankshave become much more commonplace and valuable. Sperm, eggs, and embryos can now be frozen and kept in banks, which are sometimes called “Modern Noah’s Arks” or “Frozen Zoos”.Cryopreservation techniques are used to freeze these living materials and keep them alive in perpetuity by storing them submerged in liquid nitrogen tanks at very low temperatures. Thus, preserved materials can then be used for artificial insemination, in vitro fertilization, embryo transfer, and cloningmethodologies to protect diversity in the gene pool of critically endangered species.

It is today possible to save an endangered species from extinction by preserving only parts of specimens, such as tissues, sperm, eggs, etc. – even after the death of a critically endangered animal, or collected from one found freshly dead, in captivity or from the wild. A new specimen can then be “resurrected” with the help of cloning, so as to give it another chance to breed its genes into the living population of the respective threatened species. Resurrection of dead critically endangered wildlife specimens with the help of cloning is still being perfected, and is still too expensive to be practical, but with time and further advancements in science and methodology it may well become a routine procedure not to far into the future.

Recently, strategies for finding an integrated approach to in situ and ex situ conservation techniques have been given considerable attention, and progress is being made.

By: Shehzad Ahmad Kang, Department of Plant Breeding and Genetics,University of Agriculture, Faisalabad, Pakistan- 38040

Corresponding author’s email;


Zarai Media Team

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More